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Álvaro J. Riascos1,2, Jose Sebastian Ñungo1,4, Lucas Gomez1
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Motivation

The under-reporting of data is a common phenomenon in
many data-related problems.

For example: non-sampling errors in survey sampling, food
inspection services, child services, pest controls, building’s
compliance safety regulations, animal poaching surveillance,
crime incidents in a city, among many others.

Under-reporting of socially sensitive events can undermine the
credibility of official figures or used strategically.

Models that simultaneously estimate incidence and
under-reporting rates of events can be used to improve the
allocation of public resources.

One can target and prioritize the allocation of resources to
appropriately monitor and record incidents of interest.
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Introduction

This can be seen as a classical explore-exploit trade-off.

However, true incidence rate may be elusive: (1) Partial
observation (2) Change in behavior.

In this paper we focus narrowly on the first problem.

To solve this problem, we introduce a combinatorial
multi-armed bandit model with under-reporting.

For the first problem, the literature provides performance
guarantees.

For the second, we capitalize on the asymptotic performance
of maximum likelihood estimation.
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Introduction

We provide a potential application of our methodology to the
problem of crime victimization and reporting rates at the scale
of a large city.
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Related Work

Unit non-response in survey sampling is a common
phenomenon with two proposed ways to address the problem.
The main techniques are: (i) weighted adjustment of
estimators and (ii) data imputation Särndal et.al (2007).

A closely related literature comes from the crime literature,
Kearns, et.al (2018) addresses the problem of fairness in
allocating problems where the monitoring of incidents is
censored in a well define way.

From an algorithmic point of view, our problem is similar to
the online resource allocation problem Zuo et.al (2021), Chen
et.al (2014), Gai et.al (2010), Cesa et.al (2002), among
others.

We draw heavily on this literature, by adapting their online
algorithms to our problem and estimating our parametrized
model of under-reporting in a online setup.
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The Model

Figure: Schema
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The Model

Spatial events: Xi,t, where i indexes a spatial location and t
indexes the round of the interaction.

Unobserved or filtered observations: a random variable
X̃i,t.

Parametrization: Xi,t binomial with parameter µi (i.e.,

B(n, µi)) and X̃i,t | Xi,t binomial parameter qi (i.e.,
B(Xi,t, qi)).

Objective: in a repeated interaction with this environment
learn the true mean of the distributions: Xi,t and X̃i,t.
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Algorithms:CUCB

Combinatorial Upper Confidence Bound Algorithm (CUCB)
with under-reporting

1: For each arm i, set µ̄i = min
{
µ̂i +

√
3 ln t
2Ti

, 1
}
.

2: Play S = Oracle(µ̄1, µ̄2, . . . , µ̄m).
3: Update all Ti’s and µ̂i’s.
4: For i /∈ S, observe X̃i,t conditional to outcomes played by base

arms i.
5: Update q̂i =

Empirical mean of under-reporting so far observed
nµ̂i



Fenmeno Hurtos/Imgenes - variables espaciales/im/logo.png

Introduction Related Work Methodology Application Conclusions

Algorithms: LLR, UCB1

Learning with Linear Rewards (LLR) algorithm in the
following way. Replace in CUCB:

µ̄ = µ̂i +

√
(M + 1) ln t

Ti
(1)

UCB1 algorithm ignores the potential association between
arms:

µ̂i +

√
2
ln t

Ti
(2)
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Validation: Basic parameters

We did 4 experiments.

M k Tmax n
12 2 1000 1000

Table: Global parameters. M is the number of arms, K the size of the
super arm, Tmax the of maximum number of simulations and n is the
number of trials of each binomial distribution.
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Validation: Convergencia µ

Figure: CUCB Convergence to true arms mean.
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Validation: Convergencia q

Figure: CUCB Convergence to true arms under-reporting parameters.
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Validation: Error

Figure: Convergence error of true arms mean for each algorithm. The
error is measures as the euclidean distance between the true mean vector
and estimated mean vector per round.
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Validation: Visits

Figure: Number of visits (i.e., fired arms) of algorithms to each arm.
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Validation: Error µ

Figure: Convergence error of true arms mean for each algorithm. The
error is measured as the euclidean distance between the true mean vector
and estimated mean vector per round.
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Validation: Time to Completion

Case 1 Case 2 Case 3
UCB1 3 sec 38 sec 3 min 31 sec
LLR 4 sec 51 sec 4 min 15 sec
CUCB 4 sec 53 sec 4 min 12 sec

Table: Time to completion. Case 1: M = 1, 000 and K = 100. Case 2:
M = 10, 000 and K = 1, 000. Case 3: M = 50, 000 and K = 5, 000.
Sec is seconds, min is minutes.
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Data Description

Figure: Crimes by source of information: SIEDCO is the official source of
information of crimes in Bogotá. NUSE is the security emergency call
center of the city. Total is the sum of both sources eliminating double
counting as explained in the main body of the text.
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Data Description

Figure: Bogotá, capital city of Colombia. Figure shows the 19
jurisdictions in which the city is divided and our grid of 1 km2 cells.
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Data Description

ID District Pop. Vict. Rate Rep. Rate
15 Antonio Nariño 109,176 15% 33%
12 Barrios Unidos 243,465 12% 22%
07 Bosa 673,077 13% 26%
17 Candelaria 24,088 12% 22%
02 Chapinero 139,701 9% 28%
19 Ciudad Boĺıvar 707,569 8% 17%
10 Engativá 88,708 11% 20%
09 Fontibón 394,648 10% 19%
08 Kennedy 1,088,443 13% 28%
14 Los Mártires 99,119 17% 25%
16 Puente Aranda 258,287 14% 32%
18 Rafael Uribe Uribe 374,246 12% 15%
04 San Cristóbal 404,697 13% 21%
03 Santa Fe 110,048 17% 17%
11 Suba 1,218,513 5% 19%
13 Teusaquillo 1,53,025 14% 19%
06 Tunjuelito 19,943 17% 23%
01 Usaquén 501,999 18% 13%
05 Usme 457,302 9% 33%

Table: Results of Bogotá’s City chamber of commerce, Cámara de
Comercio de Bogotá, victimization and reporting survey 2014. We use
reported rates form each jurisdiction to estimate under-reporting
simulated form our Poisson model. The table also reports the population
of each jurisdiction and victimization rate.
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Results

Figure: Convergence of the vector of incidence rates µ to the mean of all
crimes per cell across time.
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Results

Figure: Convergence of estimated vector q per round to the empirical
mean of the under-reporting rate for the whole sample. Euclidean
distance reported.
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Results

Figure: Histogram of convergence of estimated error of q in the last
round to the empirical mean of the under-reporting rate for the whole
sample. Absolute value reported.
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Results

Figure: Convergence of the estimated total number of crimes to the
observed number of crimes in the city.
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Results

Figure: Convergence of the estimated total (aggregate across cells of)
number of under-reported crimes implied by the model.
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Results

Figure: Heat map illustrating the convergence, using CUCB algorithm, of the estimated crime and
under-reporting of events in the city, to the real values. The first column, second and third rows shows the heat
map of the estimated crime incidence rates after 25 iterations and 100 iterations, respectively. The second column,
first row shows real under-reporting as measured by NUSE dataset. The second column, second and third rows
shows the heat map of the estimated under-reporting crime after 25 iterations and 100 iterations, respectively.
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In a nutshell

We have introduced an under-reporting model of
spatio-temporal events that fits well certain applications.

We modified three well known multi-armed bandit algorithms
and validated our methodology using simulations that showed
the effectiveness of the CUCB algorithm.

We then applied our methodology to crime victimization and
reporting in Bogotá.

In both cases, our method performs well and suggests that
this methodology could be used to estimate, in an online
setup, the under-reporting of events, an important problem in
public policy.
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